skip to content

Department of Pharmacology

 
Author(s): 
van Veen, HW, Abee, T, Kortstee, GJ, Pereira, H, Konings, WN, Zehnder, AJ
Abstract: 

The strictly aerobic, polyphosphate-accumulating Acinetobacter johnsonii strain 210A degrades its polyphosphate when oxidative phosphorylation is impaired. The endproducts of this degradation, divalent metal ions and inorganic phosphate, are excreted as a neutral metal-phosphate (MeHPO4) chelate via the electrogenic MeHPO4/H+ symport system of the organism. The coupled excretion of MeHPO4 and H+ in A. johnsonii 210A can generate a proton motive force. In membrane vesicles and deenergized cells, a membrane potential of about -70 mV and transmembrane pH gradient of about -8 mV were formed in response to an imposed outwardly directed MeHPO4 concentration gradient of 120 mV (initial value). The MeHPO4 efflux-induced proton motive force could drive energy-requiring processes, such as the accumulation of L-proline and L-lysine and the synthesis of ATP via the membrane-bound F0F1 H(+)-ATPase. In vivo 31P NMR studies of polyphosphate degradation in anaerobic cell suspensions revealed the presence of a considerable outwardly directed phosphate gradient across the cytoplasmic membrane corresponding to a MgHPO4 concentration gradient of at least 100 mV. This MgHPO4 concentration gradient was maintained for several hours. Thus, energy recycling by MeHPO4/H+ efflux will contribute significantly to the overall production of metabolic energy from the degradation of polyphosphate in A. johnsonii 210A.

Publication ID: 
85411
Published date: 
25 November 1994
Publication source: 
pubmed
Publication type: 
Journal articles
Journal name: 
J Biol Chem
Publication volume: 
269
Publisher: 
Parent title: 
Edition: 
Publication number: