
BHF 4 Year PhD Programme in Cardiovascular Research

Principal Investigator Details

Professor Colin W Taylor Professor of Cellular Pharmacology,

Department of Pharmacology

cwt1000@cam.ac.uk

Title

Interactions between cAMP and Ca^{2+} signals in human aortic smooth muscle cells

Abstract

Increases in cytoplasmic Ca^{2+} concentration regulate many aspects of vascular smooth muscle behaviour, most notably contraction and thereby vascular tone [1, 2]}. In many tissues, including vascular smooth muscle, interactions between signalling pathways involving Ca^{2+} and cyclic nucleotides (cGMP and cAMP) are important because they allow integration of information from different cell-surface receptors [3]. We recently demonstrated that in human aortic smooth muscle cells, the Ca²⁺ signals evoked by histamine are attenuated by prostaglandin E_2 (PGE₂), but the mechanism is unresolved. The responses to histamine are mediated by IP_3 produced by phospholipase C. PGE_2 stimulates formation of cAMP, and 8-Br-cAMP (a membrane-permeant form of cAMP) mimics the effects of PGE₂ on histamine-evoked Ca²⁺ signals. But the effects of PGE_2 appear not to be affected by inhibition of cAMP-dependent protein kinase. In cells loaded with caged IP₃, flash-photolysis evokes Ca²⁺ release via IP₃ receptors, but these responses are unaffected by PGE₂, suggested that the effects of cAMP are unlikely to be mediated by direct inhibition of IP₃ receptors. Preliminary evidence also suggests that the inhibition of histamineevoked Ca^{2+} signals may involve cAMP signalling junctions, wherein cAMP is locally delivered at high concentrations to its target. This project, which will measure both Ca^{2+} and cAMP in human aortic smooth muscle cells, will address two questions:

- 1. What is the molecular target to which the cAMP binds?
- 2. Where within the sequence from histamine to IP_3R , does cAMP cause inhibition?

Key references

- Govindan, S., Taylor, E. J. A. and Taylor, C. W. (2010) Ca²⁺ signalling by P2Y receptors in cultured rat aortic smooth muscle cells. Br. J. Pharmacol. 160, 1953-1962
 Pantazaka, E., Taylor, E. J. A., Bernard, W. and Taylor, C. W. (2013) Ca²⁺ signals evoked by histamine H₁ receptors are attenuated by activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation of prostaglandin EP₂ and EP₄ receptors in human activation activat human aortic smooth muscle cells. Br. J. Pharmacol. 169, 1624-1634
- 3 Tovey, S. C., Dedos, S. G., Taylor, E. J. A., Church, J. E. and Taylor, C. W. (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP₃ receptors mediates a direct sensitization of IP₃ receptors by cAMP. J. Cell Biol. 183, 297-311