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ABSTRACT

Patch clamp records with small numbers of channels can be
modelled effectively in a Bayesian framework. A statistical
model was formulated in which the underlying signal is
piecewise constant, any conductance level is permitted and
there are no long-range constraints. (The levels used to fit two
sections of data are independent of each other if the sections
are sufficiently separated in time.) The posterior probability
of a chosen set of conductance levels and transition times can
be calculated from the values of these parameters and the
experimental data. A Markov chain Monte Carlo procedure”,
in which the number of transitions is allowed to vary, is used
to draw a sequence of fits from their posterior distribution.

The method is applied to filtered data contaminated with
coloured noise and is illustrated with results from experimental
data.
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INTRODUCTION
The idealisation of a patch-clamp record is
a process of signal conversion which aims
to eliminate noise and filtering effects. The
complexity of the (signal) model that is
imposed depends on the strategy employed.
There are many situations in which a highly
structured model is inappropriate, such as at
early stages of analysis and when the details
of the underlying process are unknown.

The aim of this research is to develop meth-
ods of patch-clamp analysis using relatively
few assumptions and compensating for prac-
tical noise and filtering effects. We have
employed emerging Bayesian statistical mod-
elling methodologies. In particular, we have
implemented a Markov chain Monte Carlo
(MCMC) sampler. This type of computa-
tional procedure has revolutionised Bayesian
statistics in recent years.

(AR) model, and the signal was prewhitened
by deconvolution. The noise was assumed
to be approximately independent of the
conductance level. The power spectra at
different locations along the signal (Fig.
1c) were found to be similar. The zero-lag
correlation was incremented by 3% so as to
avoid excessive amplification at frequencies
with low signal-to-noise. A Chebyshev
low-pass filter (16kHz cut-off) was used

to bandlimit the signal. Fig. 1d shows the
original and whitened noise spectra.

The transition (step) response for the analogue
filters was converted into digital form (Fig.
le) and this was modified by the whitening
filter in the same fashion as the noise (Fig.
1f). The noise variance used in the model was
estimated from the baseline power spectrum.
The record was analysed in 100 blocks.

SIGNAL, MODEL AND NOISE

The idealisation model used for this analysis
assumes that the underlying signal is constant
between transitions or ‘changepoints’ (CPs)
which occur at any sample point. There are
no restrictions on the conductance levels,
and the model fit at one location is virtually
independent of that at another sufficiently
distant location.

The analysis is illustrated with an example
25-second segment of patch-clamp recording
(Figs. 1a and b) from ATP-sensitive potassium
channel(s) of a CRI-G1 cell sampled at 50kHz
having been passed through two analogue
low-pass Bessel filters with cut-off at 5)kHz, the
first of order 4 and the second of order 8.

The model required the noise to be white, and
so a 8192-point section of baseline noise was
characterised using an order-5 autoregressive

THE SAMPLER

A Markov chain Monte Carlo (MCMC) sam-
pler was implemented. This is rather com-
plex, especially since the order of the model
varies with the number of CPs (transitions).
Metropolis-Hastings moves for CP insertion
and removal were combined with Gibbs-type
moves for relocating CPs and drawing sam-
ples of conductances. Three categories of
moves were used:

A. Relocating a CP between the preceeding
and succeeding CPs, and reselecting the
conductance level either side.

B. Inserting or removing one CP. When the
CP was left out, the level for the combined
segment was reselected, and when it
was put in the levels either side were
reselected.




FIGURE 1:
THE SIGNAL, NOISE AND TRANSITION

Plot 1a is the patch-clamp record, smoothed slightly for
clarity. Red/dashed bars locate three segments of noise.
Green/ continuous bars delimit the section which was analysed
in 100 blocks. The fifth block is delimited by two shorter
bars, and is displayed in plot 1b (raw form). Plot 1c shows
the 1024-point estimate power spectral density (psd) for the
noise locations. These have been shifted to separate them from
the psd for the first location with 8192 points, to which a 5-th
order AR model was fitted with an additive adjustment; its
psd is overlayed. Plot 1d shows the noise psd before and after
whitening and additional lowpass filtering. Plots le and 1f are
the corresponding model transition shapes.
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FIGURE 2: SAMPLER OUTPUT

Plot 2a is a detail of the patch-clamp record, delimited by the
short bars in plot 1b. The sampler was run, for this block (5), for
5346 burn-in iterations. Results were then collected for (a subset
of) the next 8341 iterations. There are a variety of methods
for presenting the sample fits. Plot 2b is a set of 7 examples
taken evenly along the sampler run. This gives an indication
of the way the modelling has handled the ambiguities in the
measured signal, such as around time 2.347s. An alternative
view is shown in plot 2¢, which is the mean of the idealised

signals.

Plot 2d shows the trace, as the sampling progressed, of the
number of changepoints. The dashed line indicates the end of

the burn-in period.

2b

Conductance (pA)

12

10

T 1M

i

]

1
2.34

1
2.345

1
2.35

1
2.355

1
2.36
Time (s)

1
2.365

1
2.37

1
2.375

1
2.38

2a

12

10

Conductance (pA)
(o))
T

1 1 1 1
236 2365 237 2375

Time (s)

1 1 1 1
234 2345 235 2355

1
2.38

N
@)

Conductance (pA)

2

Q.

# Changepoints

234 2345 235 2355 236 2365 237 2375 238
Time (s)

| MWWWW
M\
|

| i
|
|
|

| i
|
|
|

1 1 | 1 1 1 1
2000 4000 6000 8000 10000 12000

Iterations




C. Inserting or removing two CPs. The loca-
tion of one of these was generated from
the output of a detection filter. The details
of this are very complex. Although the
method of choosing the location influences
the efficiency of the sampler, it does not af-
fect the equilibrium distribution provided
that detailed balance is maintained and
convergence is achieved. The other details
of these moves were similar to those of the
one-CP moves.

The model also required prior estimates of
the rate of events and size of transition. By
inspection of the record these were set to
0.01 events per sample and 6.7pA. They were
verified against the sampler output, and the
results were not sensitive to their values.
The (Gaussian) form of the prior permits
transitions of any size and does not heavily
penalise large ones.

HISTOGRAMS

One of the best representations of samples
from distributions is the histogram, which
gives the marginal distribution of (a function
of) one or more parameters. An all-points his-
togram of conductances can be generated by
replacing the signal with sample idealisations.
Such a histogram of samples for all signal
blocks is shown in Fig. 3. There appear to be
three separate levels.

A richer description (Fig. 4a) is a dual his-
togram, that is one across both conductances
and segment sojourn time (duration). In this
case there appear to be separate duration com-
ponents for the lower two conductance bands.
However, if more of the sequential dynamics
of the channel is to be discerned, it is necessary
to collect results based on the characteristics of
successive segments.

THE FIFTH BLOCK

The results for the fifth analysis block are
shown in Fig. 2. There are many ambiguities
in the measured signal. We were particularly
interested in the short-duration events and
whether or not there were partial closures.

Displaying a multidimensional distribution
is difficult. The sampler provides a powerful
method of exploring the distribution of fits,
and insights can be gained by observing a
sequence dynamically. A limited number

of instances can be usefully displayed on
paper (Fig. 2b), but the importance of any
individual fit should be deemphasised. The
mean conductance at each point (Fig. 2¢) across
the samples gives a different perspective. The
progress of the sampler is illustrated by the
trace of the number of CPs in Fig. 2d; the runs
for each block were relatively short.

FIGURE 3: IDEALISED
ALL-POINTS HISTOGRAM

Plot 3 is the all-points histogram of the sample
idealisations. This was formed from the
conductance and duration of each segment
between transitions in the sample idealised
traces. For later analysis, signal segments were
classed by conductance: A/B/C/other.
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FIGURE 4: DUAL HISTOGRAMS

Plot 4a shows the (square-root) histogram of
segments binned across conductances and
log-sojourn times for the sample idealised
traces. Classifying the segments by preceeding
and succeeding conductances produces a
rudimentary separation of the components.
Plot 4b (‘C+C’) is the histogram for segments
with class C conductances (plot 3) before and
after. Plots 4c and 4d are for those segments
with A and B conductances either side.

A possible interpretation is that there are two
independent channels, each with an open and
closed state, and a short-duration closed state.
The CxC plot (4b) would then be the durations
of short closures from both-open. The AxA
plot (4c) would be the durations between short
closures from one-open, and the BB plot (4d)
would be a combination of such effects.

component for the times between such events,
as shown in the AxA histogram (Fig. 4c). The
B«B histogram appears to have two consituent
parts: one for excursions to A and one for
intra-excursion segments in C.

These results appear consistent with the
hypothesis that there are two independent
channels, each with an open and closed state
and a further short-duration closed state.
Note that the chosen signal record has a high
proportion of openings, and so the relative
times spent in each state is unrepresentatve.

CONCLUSIONS

A variety of emerging statistical modelling
techniques are being applied to the signals
obtained from ion channels, and a number of
these use MCMC methods. Model complex-
ities vary, and in principle everything that is
known about the signal should be included

INTERPRETATION

Dealing with the histogram for two neigh-
bouring segments would involve storage and
visualisation problems, and there would be
few instances in any histogram bin. Further-
more, an analysis of short excursions from one
conductance to another requires treatment of
three successive segments.

One approach is to use coarse binning of
some of the parameters. In this case a rough
separation of the constituents of the dual
histogram was possible by generating a set
of histograms for different preceeding and
succeeding conductance ranges (A, B and C in
Fig. 3). The histogram of segment levels and
durations with segments of conductance type
C before and after ("CxC’, Fig. 4b) suggests
that there are short closures that return to the
open state. There is a complementary

to maximise the quality of inferences that are
drawn. However there are many situations,

especially at early stages of data exploration,
in which a simple model is desirable.

The model employed in this research was
designed to minimise the number of assump-
tions whilst accounting for the noise spectrum
and filtering. The conductances allowed for
each segment were unconstrained, and the

fit is localised. Despite the lack of model
structure, it was possible to explore the signal
quite extensively, and to propose a tentative
hypothesis for the underlying process. It
would be appropriate to take the signal on to
analysis with a hidden Markov model. We
would suggest that before doing so it might be
analysed using an intermediate model, such as
one in which the permitted conductances are
constrained to a discrete global set.




FIGURE 5: TEMPLATE HISTOGRAM

Plot 5 shows a theoretical distribution of conductances and
sojourns. This was derived for the case when the transition
locations are correctly estimated. The sojourn times are
exponentially distributed (before transformation to logarithmic
axis). The sampled conductance levels for a given conductance
are Gaussian.

The mean conductances and durations of the two components
were selected by eye to approximate the histogram of plot 4d.
The match is surprisingly close, given that there are missed
and false events in the sampler output.
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