skip to content

Department of Pharmacology

 
Read more at: Frozen? Let it go to reset circadian rhythms.

Frozen? Let it go to reset circadian rhythms.

The molecular events in response to severe hyperthermia are not fully understood, and research has focused mainly on the effects of cooling at temperatures between 28°C and 35°C. In a new study, Fischl et al have analysed human cardiomyocytes at lower temperatures (8°C, 18°C and 28°C) and identified a novel mechanism by which hypothermia synchronises the circadian clock: cooling induces nuclear accumulation of transcripts that encode negative regulators of the circadian clock, which are released into the cytoplasm upon rewarming allowing synthesis of specific clock proteins.


Read more at: Should I Stay or Should I Go: eIF3 Remains Ribosome Associated and Is Required for Elongation.

Should I Stay or Should I Go: eIF3 Remains Ribosome Associated and Is Required for Elongation.

Wagner et al. (2020), Bohlen et al. (2020), and Lin et al. (2020) use Sel-TCP-seq or selective ribosome profiling to gain insights into mRNA translation initiation, highlighting distinctions between yeast and higher eukaryotes and a role for eIF3 in elongation.


Read more at: Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I.

Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I.

Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death.


Read more at: Efficient recovery of the RNA-bound proteome and protein-bound transcriptome using phase separation (OOPS).

Efficient recovery of the RNA-bound proteome and protein-bound transcriptome using phase separation (OOPS).

RNA-protein interactions play a pivotal role in cell homeostasis and disease, but current approaches to study them require a considerable amount of starting material, favor the recovery of only a subset of RNA species or are complex and time-consuming. We recently developed orthogonal organic phase separation (OOPS): a quick, efficient and reproducible method to purify cross-linked RNA-protein adducts in an unbiased way. OOPS avoids molecular tagging or the capture of polyadenylated RNA.


Read more at: Control of translation elongation in health and disease.

Control of translation elongation in health and disease.

Regulation of protein synthesis makes a major contribution to post-transcriptional control pathways. During disease, or under stress, cells initiate processes to reprogramme protein synthesis and thus orchestrate the appropriate cellular response. Recent data show that the elongation stage of protein synthesis is a key regulatory node for translational control in health and disease.


Read more at: Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome.

Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome.

Protein-RNA interactions regulate all aspects of RNA metabolism and are crucial to the function of catalytic ribonucleoproteins. Until recently, the available technologies to capture RNA-bound proteins have been biased toward poly(A) RNA-binding proteins (RBPs) or involve molecular labeling, limiting their application. With the advent of organic-aqueous phase separation-based methods, we now have technologies that efficiently enrich the complete suite of RBPs and enable quantification of RBP dynamics.


Read more at: Full-length NF-κB repressing factor contains an XRN2 binding domain.

Full-length NF-κB repressing factor contains an XRN2 binding domain.

NF-κB repressing factor (NKRF) was recently identified as an RNA binding protein that together with its associated proteins, the 5'-3' exonuclease XRN2 and the helicase DHX15, is required to process the precursor ribosomal RNA. XRN2 is a multi-functional ribonuclease that is also involved in processing mRNAs, tRNAs and lncRNAs. The activity and stability of XRN2 are controlled by its binding partners, PAXT-1, CDKN2AIP and CDKN2AIPNL. In each case, these proteins interact with XRN2 via an XRN2 binding domain (XTBD), the structure and mode of action of which is highly conserved.


Read more at: Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis.

Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis.

There is a desire to engineer mammalian host cell lines to improve cell growth/biomass accumulation and recombinant biopharmaceutical protein production in industrially relevant cell lines such as the CHOK1 and HEK293 cell lines. The over-expression of individual subunits of the eukaryotic translation factor eIF3 in mammalian cells has previously been shown to result in oncogenic properties being imparted on cells, including increased cell proliferation and growth and enhanced global protein synthesis rates.


Read more at: Signaling from mTOR to eIF2α mediates cell migration in response to the chemotherapeutic doxorubicin.

Signaling from mTOR to eIF2α mediates cell migration in response to the chemotherapeutic doxorubicin.

After exposure to cytotoxic chemotherapeutics, tumor cells alter their translatome to promote cell survival programs through the regulation of eukaryotic initiation factor 4F (eIF4F) and ternary complex. Compounds that block mTOR signaling and eIF4F complex formation, such as rapamycin and its analogs, have been used in combination therapies to enhance cell killing, although their success has been limited.


Read more at: Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.

Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.

PTB (polypyrimidine-tract-binding protein) is a ubiquitous RNA-binding protein. It was originally identified as a protein with a role in splicing but it is now known to function in a large number of diverse cellular processes including polyadenylation, mRNA stability and translation initiation. Specificity of PTB function is achieved by a combination of changes in the cellular localization of this protein (its ability to shuttle from the nucleus to the cytoplasm is tightly controlled) and its interaction with additional proteins.