skip to content

Department of Pharmacology

 
Author(s): 
Roobol, A, Roobol, J, Carden, MJ, Smith, ME, Hershey, JWB, Bastide, A, Knight, JRP, Willis, AE, Smales, CM
Abstract: 

eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus.

Publication ID: 
1377124
Published date: 
1 March 2014
Publication source: 
pubmed
Publication type: 
Journal articles
Journal name: 
Biochem J
Publication volume: 
458
Publisher: 
Parent title: 
Edition: 
Publication number: