skip to content

Department of Pharmacology

 
Author(s): 
Ladurner, AG, Itzhaki, LS, de Prat Gay, G, Fersht, AR
Abstract: 

Chymotrypsin inhibitor 2 (CI2) folds kinetically as a single domain protein. It has been shown that elements of native secondary structure do not significantly form in fragments as the 64 residue protein is progressively increased in length from its N terminus, until at least 60 residues are present. Here, we analyse peptides of increasing length from the C terminus and find that native-like structure is not present even in the largest, fragment (7-64). We have examined sets of peptides of the form (1 - x) and ((x + 1)-64) to detect complementation. The only pair that readily complements and gives native-like structure is (1-40) and (41-64), where cleavage occurs in the protease-binding loop of CI2. But, all the pairs of peptides (1 - x) + (41-64) complement for x > 40, as do all pairs of (1-40) + (x-64), where x < 40. The resultant complexes appear to be equivalent to (1-40). (41-64) with the overlapping sequence being unstructured. Thus, the folding of CI2 is extremely co-operative, and interactions have to be made between subdomains (1-40) and (41-64). This is consistent with the mechanism proposed for the folding pathway of intact CI2 in which a diffuse nucleus is formed in the transition state between the alpha-helix in the N-terminal region of the protein and conserved hydrophobic contacts in the C-terminal region of the polypeptide. It is with these protein design features that CI2 can be an effective protease inhibitor.

Publication ID: 
161894
Published date: 
17 October 1997
Publication source: 
pubmed
Publication type: 
Journal articles
Journal name: 
J Mol Biol
Publication volume: 
273
Publisher: 
Parent title: 
Edition: 
Publication number: