skip to content

Department of Pharmacology

 
Author(s): 
Moneer, Z, Pino, I, Taylor, EJA, Broad, LM, Liu, Y, Tovey, SC, Staali, L, Taylor, CW
Abstract: 

Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439-448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca 2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13-21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca 2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237-244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1 = 6 > 2 > 3). © 2005 Biochemical Society.

Publication ID: 
212669
Published date: 
1 August 2005
Publication source: 
scopus
Publication type: 
Journal articles
Journal name: 
Biochemical Journal
Publication volume: 
389
Publisher: 
Parent title: 
Edition: 
Publication number: