skip to content

Department of Pharmacology

 
Author(s): 
Swatton, JE, Taylor, CW
Abstract: 

In cytosol-like medium (CLM) with a free [Ca(2+)] of 200 nm, a supramaximal concentration of inositol 1,4,5-trisphosphate (IP(3)) (30 microm) evoked (45)Ca(2+) release from type 3 IP(3) receptors only after a latency of 48 +/- 6 ms; this latency could not be reduced by increasing the IP(3) concentration. In CLM containing a low free [Ca(2+)] ( approximately 4 nm), 300 microm IP(3) evoked (45)Ca(2+) release after a latency of 66 +/- 11 ms; this was reduced to 14 +/- 3 ms when the [Ca(2+)] was 1 mm. Preincubation with CLM containing 100 microm Ca(2+) caused a rapid (half-time = 33 +/- 9 ms), complete, and fully reversible inhibition that could not be overcome by a high concentration of IP(3) (300 microm). Hepatic (type 2) IP(3) receptors were not inhibited by Ca(2+) once they had bound IP(3), but 100 microm Ca(2+) rapidly inhibited type 3 IP(3) receptors whether it was delivered before addition of IP(3) or at any stage during a response to IP(3). Ca(2+) increases the affinity of IP(3) for hepatic receptors by slowing IP(3) dissociation, but Ca(2+) had no effect on IP(3) binding to type 3 receptors. The rate of inhibition of type 3 IP(3) receptors by Ca(2+) was faster than the rate of IP(3) dissociation, and occurred at similar rates whether receptors had bound a high (adenophostin) or low affinity (3-deoxy-3-fluoro-IP(3)) agonist. Dissociation of agonist is not therefore required for Ca(2+) to inhibit type 3 IP(3) receptors. We conclude that type 2 and 3 IP(3) receptors are each biphasically regulated by Ca(2+), but by different mechanisms. For both, IP(3) binding causes a stimulatory Ca(2+)-binding site to be exposed allowing Ca(2+) to bind and open the channel. IP(3) binding protects type 2 receptors from Ca(2+) inhibition, but type 3 receptors are inhibited by Ca(2+) whether or not they have IP(3) bound. Increases in cytosolic [Ca(2+)] will immediately inhibit type 3 receptors, but inhibit type 2 receptors only after IP(3) has dissociated.

Publication ID: 
55810
Published date: 
17 May 2002
Publication source: 
pubmed
Publication type: 
Journal articles
Journal name: 
J Biol Chem
Publication volume: 
277
Publisher: 
Parent title: 
Edition: 
Publication number: