skip to content

Department of Pharmacology

 
Author(s): 
Itzhaki, LSR, Perez-Riba, A
Abstract: 

Quantitative determination of protein thermodynamic stability is fundamental to many research areas, both basic and applied. Although chemical-induced denaturation is the gold-standard method, it has been replaced in many settings by semi-quantitative approaches such as thermal stability measurements. The reason for this shift is that chemical denaturation experiments are labour-intensive, sample-costly and time-consuming, and it has been assumed that miniaturisation to a high-throughput format would not be possible without concomitantly comprising data quality. Here we exploit current technologies to create a high-throughput label-free chemical denaturation method that is capable of generating replicate datasets on multiple proteins in parallel on a timescale that is at least ten times faster, much more economical on sample, and with the potential for superior data quality, than the conventional methods used in most research labs currently.

Publication ID: 
921936
Published date: 
14 July 2017 (Accepted for publication)
Publication source: 
manual
Publication type: 
Journal articles
Journal name: 
Scientific Reports
Publication volume: 
7
Publisher: 
Nature Publishing Group
Parent title: 
Edition: 
Publication number: 
9071