skip to content

Department of Pharmacology

 
Read more at: Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor.

Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor.

IP3Rs (inositol 1,4,5-trisphosphate receptors) are the intracellular channels that mediate release of Ca2+ from the endoplasmic reticulum in response to the many stimuli that evoke Ins(1,4,5)P3 formation. We characterized and purified type 1 IP3R heterologously expressed in Sf9 insect cells, and used the purified IP3R1 to determine its three-dimensional structure by electron microscopy and single-particle analysis. Recombinant IP3R1 has 4-fold symmetry with overall dimensions of approx. 19.5 nm x 19.5 nm x 17.5 nm.


Read more at: Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase.

Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase.

In HEK cells stably expressing type 1 receptors for parathyroid hormone (PTH), PTH causes a sensitization of inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3) that is entirely mediated by cAMP and requires cAMP to pass directly from type 6 adenylyl cyclase (AC6) to IP(3)R2. Using DT40 cells expressing single subtypes of mammalian IP(3)R, we demonstrate that high concentrations of cAMP similarly sensitize all IP(3)R isoforms to IP(3) by a mechanism that does not require cAMP-dependent protein kinase (PKA).


Read more at: Ca(2+) channels on the move.

Ca(2+) channels on the move.

The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER).


Read more at: Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain.

Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain.

Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation.


Read more at: Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals.

Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals.

Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.


Read more at: IP3 receptors: some lessons from DT40 cells.

IP3 receptors: some lessons from DT40 cells.

Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of IP3R highlights their importance, but it also presents problems when attempting to resolve the behavior of defined IP3R.


Read more at: Dynamic regulation of IP3 receptor clustering and activity by IP3.

Dynamic regulation of IP3 receptor clustering and activity by IP3.

Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are intracellular Ca(2+) channels. Their regulation by both IP(3) and Ca(2+) allows interactions between IP(3)Rs to generate a hierarchy of intracellular Ca(2+) release events. These can progress from openings of single IP(3)R, through near-synchronous opening of a few IP(3)Rs within a cluster to much larger signals that give rise to regenerative Ca(2+) waves that can invade the entire cell.


Read more at: Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+.

Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+.

The versatility of Ca2+ signals derives from their spatio-temporal organization. For Ca2+ signals initiated by inositol-1,4,5-trisphosphate (InsP3), this requires local interactions between InsP3 receptors (InsP3Rs) mediated by their rapid stimulation and slower inhibition\ by cytosolic Ca2+. This allows hierarchical recruitment of Ca2+ release events as the InsP3 concentration increases. Single InsP3Rs respond first, then clustered InsP3Rs open together giving a local 'Ca2+ puff', and as puffs become more frequent they ignite regenerative Ca2+ waves.


Read more at: How does intracellular Ca2+ oscillate: by chance or by the clock?

How does intracellular Ca2+ oscillate: by chance or by the clock?

Ca2+ oscillations have been considered to obey deterministic dynamics for almost two decades. We show for four cell types that Ca2+ oscillations are instead a sequence of random spikes. The standard deviation of the interspike intervals (ISIs) of individual spike trains is similar to the average ISI; it increases approximately linearly with the average ISI; and consecutive ISIs are uncorrelated.


Read more at: 2-Position base-modified analogues of adenophostin A as high-affinity agonists of the D-myo-inositol trisphosphate receptor: in vitro evaluation and molecular modeling.

2-Position base-modified analogues of adenophostin A as high-affinity agonists of the D-myo-inositol trisphosphate receptor: in vitro evaluation and molecular modeling.

Adenophostin A (AdA) is a potent agonist of the d-myo-inositol 1,4,5-trisphosphate receptor (Ins(1,4,5)P3R). Various 2-aminopurine analogues of AdA were synthesized, all of which (guanophostin 5, 2,6-diaminopurinophostin 6, 2-aminopurinophostin 7, and chlorophostin 8) are more potent than 2-methoxy-N6-methyl AdA, the only benchmark of this class. The 2-amino-6-chloropurine nucleoside 11, from Vorbrüggen condensation of 2-amino-6-chloropurine with appropriately protected disaccharide, served as the advanced common precursor for all the analogues.